Saturated and unsaturated fat induce hepatic insulin resistance independently of TLR-4 signaling and ceramide synthesis in vivo.
نویسندگان
چکیده
Hepatic insulin resistance is a principal component of type 2 diabetes, but the cellular and molecular mechanisms responsible for its pathogenesis remain unknown. Recent studies have suggested that saturated fatty acids induce hepatic insulin resistance through activation of the toll-like receptor 4 (TLR-4) receptor in the liver, which in turn transcriptionally activates hepatic ceramide synthesis leading to inhibition of insulin signaling. In this study, we demonstrate that TLR-4 receptor signaling is not directly required for saturated or unsaturated fat-induced hepatic insulin resistance in both TLR-4 antisense oligonucleotide treated and TLR-4 knockout mice, and that ceramide accumulation is not dependent on TLR-4 signaling or a primary event in hepatic steatosis and impairment of insulin signaling. Further, we show that both saturated and unsaturated fats lead to hepatic accumulation of diacylglycerols, activation of PKCε, and impairment of insulin-stimulated IRS-2 signaling. These data demonstrate that saturated fat-induced insulin resistance is independent of TLR-4 activation and ceramides.
منابع مشابه
Lipid-induced hepatic insulin resistance
principal function of insulin in the liver is to suppress glucose production when blood glucose concentrations increase. This process is impaired in hepatic insulin resistance and contributes to postprandial hyperglycemia. The development of hepatic insulin resistance is very closely linked to non alcoholic fatty liver disease (NAFLD), and is a major factor in the pathogenesis of type 2 diabete...
متن کاملSaturated- and n-6 polyunsaturated-fat diets each induce ceramide accumulation in mouse skeletal muscle: reversal and improvement of glucose tolerance by lipid metabolism inhibitors.
Lipid-induced insulin resistance is associated with intracellular accumulation of inhibitory intermediates depending on the prevalent fatty acid (FA) species. In cultured myotubes, ceramide and phosphatidic acid (PA) mediate the effects of the saturated FA palmitate and the unsaturated FA linoleate, respectively. We hypothesized that myriocin (MYR), an inhibitor of de novo ceramide synthesis, w...
متن کاملSaturated fatty acids induce endoplasmic reticulum stress and apoptosis independently of ceramide in liver cells.
Accumulation of lipids in nonadipose tissues can lead to cell dysfunction and cell death, a phenomenon known as lipotoxicity. However, the signaling pathways and mechanisms linking lipid accumulation to cell death are poorly understood. The present study examined the hypothesis that saturated fatty acids disrupt endoplasmic reticulum (ER) homeostasis and promote apoptosis in liver cells via acc...
متن کاملFatty acid-mediated endoplasmic reticulum stress in vivo: differential response to the infusion of Soybean and Lard Oil in rats.
BACKGROUND In cell systems, saturated fatty acids, compared to unsaturated fatty acids, induce a greater degree of ER stress and inflammatory signaling in a number of cell types, including hepatocytes and adipocytes. The aim of the present study was to determine the effects of infusions of lard oil (enriched in saturated fatty acids) and soybean oil (enriched in unsaturated fatty acids) on live...
متن کاملTargeting Ceramide Synthesis to Reverse Insulin Resistance
Insulin resistance is a key feature of type 2 diabetes, and the strong association between fat oversupply and defective insulin action in target tissues, especially skeletal muscle and liver, has motivated the search for intracellular lipid mediators that can interfere with insulin signaling and glucose homeostasis. Two of the best-studied candidates are diacylglycerol (DAG) and ceramide (1–3),...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 110 31 شماره
صفحات -
تاریخ انتشار 2013